Multi-scale exploration of convex functions and bandit convex optimization

نویسندگان

  • Sébastien Bubeck
  • Ronen Eldan
چکیده

We construct a new map from a convex function to a distribution on its domain, with the property that this distribution is a multi-scale exploration of the function. We use this map to solve a decadeold open problem in adversarial bandit convex optimization by showing that the minimax regret for this problem is Õ(poly(n) √ T ), where n is the dimension and T the number of rounds. This bound is obtained by studying the dual Bayesian maximin regret via the information ratio analysis of Russo and Van Roy, and then using the multi-scale exploration to construct a new algorithm for the Bayesian convex bandit problem.1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bandit Convex Optimization: Towards Tight Bounds

Bandit Convex Optimization (BCO) is a fundamental framework for decision making under uncertainty, which generalizes many problems from the realm of online and statistical learning. While the special case of linear cost functions is well understood, a gap on the attainable regret for BCO with nonlinear losses remains an important open question. In this paper we take a step towards understanding...

متن کامل

Optimal Algorithms for Online Convex Optimization with Multi-Point Bandit Feedback

Bandit convex optimization is a special case of online convex optimization with partial information. In this setting, a player attempts to minimize a sequence of adversarially generated convex loss functions, while only observing the value of each function at a single point. In some cases, the minimax regret of these problems is known to be strictly worse than the minimax regret in the correspo...

متن کامل

Optimistic Bandit Convex Optimization

We introduce the general and powerful scheme of predicting information re-use in optimization algorithms. This allows us to devise a computationally efficient algorithm for bandit convex optimization with new state-of-the-art guarantees for both Lipschitz loss functions and loss functions with Lipschitz gradients. This is the first algorithm admitting both a polynomial time complexity and a reg...

متن کامل

Nearly Tight Bounds for the Continuum-Armed Bandit Problem

In the multi-armed bandit problem, an online algorithm must choose from a set of strategies in a sequence of n trials so as to minimize the total cost of the chosen strategies. While nearly tight upper and lower bounds are known in the case when the strategy set is finite, much less is known when there is an infinite strategy set. Here we consider the case when the set of strategies is a subset...

متن کامل

On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization

The problem of stochastic convex optimization with bandit feedback (in the learning community) or without knowledge of gradients (in the optimization community) has received much attention in recent years, in the form of algorithms and performance upper bounds. However, much less is known about the inherent complexity of these problems, and there are few lower bounds in the literature, especial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016